
14 \ December 2016 \ www.phparch.com

FEATURE

Abstracting HTTP
Clients in PHP
David Buchmann

Many PHP applications are designed
as server applications which receive a
request and return a response to the
client. However, PHP is also used to write
API clients. This can be CLI tools written in
PHP or server applications which need to talk to
another system over HTTP. In this article, we’ll look
at a library to abstract out the HTTP client used in your
code to keep it flexible and future-proof.

The PSR-7 standard1 published by the Framework Interop-
erability Group (FIG) defines domain model for HTTP
request and response. A standard for request and response
is enough for server applications and middleware2. However,
when we write code which acts as an HTTP client, we need
to send a request. PSR-7 requests are value objects and can’t
send themselves—which is good, as they are also used to
represent the request in a server application. There is no PSR
for HTTP clients (yet).

HTTPlug3 defines interfaces and behaviors for interoper-
able clients. Until we have a PSR defining HTTP clients, it’s
a good first step. Instead of writing code hard coupled to a
specific client library like Guzzle4, it can be written against
HTTPlug and used with any supported client. You can use
one client today with the knowledge if a better client comes
along or your current one is no longer supported, you’ll be
able to easily switch it. This is valuable for all applications,
and particularly useful for reusable libraries like general API
clients which are meant to be integrated into applications.
The HTTP client implementation should not be forced by a
reusable library, but a choice of the integrator. HTTPlug is
provided by the PHP HTTP group5, along with additional
tools. The organization consists of individuals interested in
improving the state of HTTP support in PHP. At the time of
writing, there are HTTPlug adapters for Guzzle 5 and 6, Buzz
and React, as well as native cURL and socket clients.

1 PSR-7 standard: http://www.php-fig.org/psr/psr-7/
2 Middleware is code which alters a request or response object and

then passes it to the next layer.
3 HTTPlug: http://httplug.io
4 Guzzle: http://docs.guzzlephp.org
5 the PHP HTTP group: https://github.com/php-http

PSR-7:
HTTP Message
Interfaces

PSR-7 defines interfaces for HTTP messages. Both requests
and responses can have headers and a body. Requests addi-
tionally specify the requested URL and an HTTP method,
like GET, POST, PUT, and so on. Responses have a status code.
In addition to the messages themselves, PSR-7 also defines
the StreamInterface to represent the (potentially huge)
body, and the UriInterface to handle request URI infor-
mation.

An important design decision is request and response
objects are immutable. Methods to alter headers or add a
body return an altered copy of the message, leaving the orig-
inal message unchanged.

The full specification is available at
http://www.php-fig.org/psr/psr-7/. For example, in the
code below the with… methods return a copy of the original
request.
$request = new GuzzleHttp\Psr7\Request();
$request = $request
 ->withMethod('GET')
 ->withUri($uri)
;

echo $request->getMethod(); // prints "GET"

Why Abstract Further?
PSR-7 by itself is a big help in interoperability. However,

applications acting as HTTP clients need to create requests
and send them with a client. There should be no hard
coupling to specific PSR-7 and HTTP client implementa-
tions. This is even more important for reusable libraries. PHP
does not support different parts of an application using differ-
ent versions of the same library. Reusable libraries require a

phparch.com
http://www.php-fig.org/psr/psr-7/
http://httplug.io
http://docs.guzzlephp.org
https://github.com/php-http
http://www.php-fig.org/psr/psr-7/

 www.phparch.com \ December 2016 \ 15

Abstracting HTTP Clients in PHP

specific major version of an HTTP client implementation
or risk running into conflicts. Ideally, an application should
only need to use one HTTP client implementation.

Most libraries should not need to know what client they
are using. They need to send HTTP requests and receive
responses. With the HTTPlug client interface, the library
can state it needs an HTTP client without tying directly to
a specific implementation. The only time specifics about
the client configuration—like timeouts or special headers—
have to be present on each request (e.g. API token) should
be when creating the HTTP client. This should be handled
in the bootstrapping part of the application and when the
client is injected into the library. Bootstrapping is discussed
in detail later in this article.

The HTTPlug Client
When we write PHP server applications, we see HTTP as:
1. Receive a request,
2. return a response.
Client applications, on the other hand, perceive HTTP as:
1. Send a request,
2. get a response back.
Clients could be CLI tools written in PHP or part of a serv-

er application that needs to send requests to other systems.
To send a request, we need a client. Instead of hard

coupling our code to a specific client implementation or even
raw cURL functions, we can use the HTTPlug interface. The
HTTPlug interface consists of a single method:
sendRequest(RequestInterface \$request)

This method accepts any PSR-7 request and returns a
PSR-7 response. It does not get much simpler!

Support for Asynchronous Requests
There is also an interface for asynchronous clients. Its

method sendAsyncRequest returns a Promise which will
eventually contain the response or an exception. This behav-
ior is defined specifically for HTTPlug as PHP has no built-in
support for promises and the PSR has not yet released their
standard.

The HTTPlug promise has a then() method which accepts
two callbacks. One of them will be executed at some point in
the future. This allows your application to continue while a
request is being sent, for example to send several asynchro-
nous requests or perform other operations.

The first callback is called with the response, once it
arrives. The second callback is called with an exception if and
when the client throws an exception instead of returning a
response.

It is important to note if the request has not yet been sent
when the PHP process terminates, the requests will never be
sent and the callbacks will not be called. To avoid issues, you
should call the Promise::wait() method that blocks until

the promise resolves with either success or an error. When
the wait method returns, you can be sure one of the two call-
backs has been executed. If it is important that the requests
are handled, the strategy is to collect all promises and wait for
each promise before exiting the application. On the console,
that would be at the very end of the script; in web applica-
tions it is ideally after the response has been sent to the client.
In Symfony, it would be an event listener which triggers on
kernel.terminate. Listing 1 shows sending a request asyn-
chronously and specifying the callbacks.

Factories for PSR-7
If we do not want to bind the client application to a specif-

ic message implementation, we need a message factory which
can create requests. The PHP-HTTP organization defines
factories for messages, streams, and URIs. The package
PHP-HTTP/message6 provides factories for the Guzzle and
Zend Diactoros PSR-7 implementations. Bootstrapping
aside, the implementation is no longer coupled to a specific
implementation. Listing 2 is an example usage of the PSR-7
factories.

Middleware
With PSR-7 setting a standard for requests and respons-

es, middleware becomes easy to implement. From an HTTP
client perspective, Middleware can change a request before
it is sent out, or alter the response before it goes back to the
application. It is usually implemented as a chain of logic
which passes the request on and returns the response. From

6 PHP-HTTP/message:
http://docs.php-http.org/en/latest/message.html

LISTING 2
01. <?php
02. use Http\Message\MessageFactory\DiactorosMessageFactory;
03. use Http\Message\StreamFactory\GuzzleStreamFactory;
04.
05. $messageFactory = new DiactorosMessageFactory();
06. $streamFactory = new GuzzleStreamFactory();
07. // ...
08. $request = $messageFactory->createRequest(
09. 'GET', 'http://example.com'
10.);
11. $stream = $streamFactory->createStream('stream content');
12. $request = $request->withBody($stream);

LISTING 1
01. $promise = $httpAsyncClient->sendAsyncRequest($request);
02. $promise->then(function (ResponseInterface $response) {
03. // onFulfilled callback
04. echo 'The response is available';
05.
06. return $response;
07. }, function (Exception $e) {
08. // onRejected callback
09. echo 'An error happens';
10.
11. throw $e;
12. });
13. // ...
14. $promise->wait();

phparch.com
http://docs.php-http.org/en/latest/message.html

16 \ December 2016 \ www.phparch.com

Abstracting HTTP Clients in PHP

the consumer point of view, middleware and the actual client
do the same; they transform a request into a response. The
difference is in the implementation—a middleware acts in
the chain and forwards the request, while a client actually
knows how to send the request to the server.

“From the consumer point of view, middleware and
HTTP client transform a request into a response.”

A middleware could, for example, implement HTTP cach-
ing and check if we have a valid cached response for a request,
and return the cached response instead of continuing the
middleware chain. If no cache is found the middleware
continues the chain and looks at the response to decide if the
response can be added to the cache for the future.
Figure 1

As this example illustrates, the order of middlewares
matters: those coming before the cache will already have
altered the request. The changes they do to the response will
be applied to cache hits as well. Middleware which comes
after the cache is not executed on a cache hit. On the other
hand, changes to the response done by middleware between
the cache and the actual client get stored in the cache. Imag-
ine a middleware which transforms HTTP status codes into
domain exceptions—if this middleware is put at the start of
the chain, the error could be stored in the cache and cache
hits on the error response would still be transformed into
exceptions. If the exception is thrown after the caching
plugin, caching will not be attempted as the exception aborts
the chain and will go straight to the library.

In HTTPlug, middleware is used with the PluginClient
class that decorates a client and applies the plugins before
forwarding to the client. As the order of plugins is relevant,
plugins can only be set in the constructor of the PluginClient.

Using HTTPlug in Your Application
Let us build a simple application which uses HTTPlug to

load the homepage of www.phparch.com.

Installation
HTTPlug is an abstraction from client implementation,

but in the end your application will need a concrete client.
In our example, we’re using Guzzle 6. In an empty folder, run
the following commands and choose to not select dependen-
cies interactively:
composer init
composer require php-http/guzzle6-adapter php-http/message

Using HTTPlug
Once Composer has installed our dependencies, the small-

est possible application looks as follows:

If you invoke the script at the command line, you’ll see
output similar to:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">

<head profile="http://gmpg.org/xfn/11">
 <meta http-equiv="Content-Type"
 content="text/html; charset=UTF-8" />
 <meta name="viewport" content="initial-scale=1,
 maximum-scale=1">
 <title>php[architect] – Magazine, Training,
 Books, Conferences</title>

 <link rel="shortcut icon" ...

Only the bootstrapping code needs to know which imple-
mentation is used. The rest of the application doesn’t change
when we need to adjust the client configuration or switch to
a different implementation.

Let’s add a plugin to the client to send an API key. First, we
need to install the plugin decorator:
composer require php-http/client-common

LISTING 3
01. #!/usr/bin/env php
02. <?php
03.
04. use Http\Adapter\Guzzle6\Client;
05. use Http\Message\MessageFactory\GuzzleMessageFactory;
06. require 'vendor/autoload.php';
07.
08. // HTTP implementation specific bootstrap code
09. $httpClient = new Client();
10. $messageFactory = new GuzzleMessageFactory();
11. // HTTP client agnostic application
12. $request = $messageFactory->createRequest(
13. 'GET', 'https://www.phparch.com/'
14.);
15. $response = $httpClient->sendRequest($request);
16. echo substr($response->getBody(), 0, 600) . '...';

phparch.com

 www.phparch.com \ December 2016 \ 17

Abstracting HTTP Clients in PHP

With the code installed, we can adjust our bootstrap from
the above code example to use the plugin:
$httpClient = new Http\Adapter\Guzzle6\Client();
$httpClient = new Http\Client\Common\PluginClient(
 $httpClient, [
 new Http\Client\Common\Plugin\HeaderSetPlugin(
 ['API-Key' => 'my-api-key']
),
]);

The application itself does not need to change; it will
continue to talk to an object which implements HttpClient.

As a last and slightly more complicated example, we can
cache responses. The cache plugin is in a separate package
because it has an additional dependency on PSR-67—the
caching standard—and we also need a cache implementa-
tion:
composer require php-http/cache-plugin cache/filesys-
tem-adapter

The bootstrap for caching consists in setting up Flysystem
and telling it the root folder of the cache, see Listing 4.

By default, the cache plugin respects the Cache-Control
headers sent by the server. But the homepage of phparch.com
has headers that forbid to cache. For the sake of the example,
we configured the plugin to ignore the caching instructions
from the server, and cache everything for one minute (60
seconds).

7 PSR-6: http://www.php-fig.org/psr/psr-6/

Writing an HTTP Client Agnostic Library
When writing a reusable library which does HTTP

requests, the bootstrapping should not be in the library, to
be completely implementation agnostic. This means that you
also don’t require a specific client implementation in your
composer file, but only HTTPlug and the virtual package
php-http/client-implementation:

Listing 5 is a composer.json for a HTTP client agnostic
library. It is then up to the application consuming your
library to chose which HTTPlug client implementation to
use.

Bootstrapping a Shared Library
In recent years, Inversion of Control (e.g. with Symfony 2

using the Dependency Injection pattern) has become popu-
lar in the PHP world. HTTPlug and the PSR-7 factories work
very well with code built for Dependency Injection (DI). To
use inversion of control, have your classes require the HTTP
client and factories in their constructor. Then your code does
not need to know which factories to instantiate or how to
build the client. See Listing 6 for a constructor of a class
which needs to send HTTP messages.

LISTING 4
01. use Cache\Adapter\Filesystem\FilesystemCachePool;
02. use Http\Client\Common\PluginClient;
03. use Http\Client\Common\Plugin\HeaderSetPlugin;
04. use Http\Client\Common\Plugin\CachePlugin;
05.
06. $filesystem = new FilesystemCachePool(
07. new League\Flysystem\Filesystem(
08. new League\Flysystem\Adapter\Local(
09. sys_get_temp_dir() . DIRECTORY_SEPARATOR . 'phparch'
10.)
11.)
12.);
13. $cacheOpts = [
14. 'respect_cache_headers' => false,
15. 'default_ttl' => 60,
16.];
17.
18. $httpClient = new PluginClient($httpClient, [
19. new HeaderSetPlugin(['API-Key' => 'my-api-key']),
20. new CachePlugin($filesystem, $streamFactory, $cacheOpts),
21.]);

LISTING 5
01. {
02. "require": {
03. "php-http/client-implementation": "^1.0",
04. "php-http/httplug": "^1.0",
05. "php-http/message-factory": "^1.0"
06. },
07. "require-dev": {
08. "php-http/mock-client": "^0.3",
09. "guzzlehttp/psr7": "^1.0"
10. }
11. }

LISTING 6
01. <?php
02.
03. use Http\Client\HttpClient;
04. use Http\Message\MessageFactory;
05.
06. class ApiClient
07. {
08. public function __construct(
09. HttpClient $httpClient,
10. MessageFactory $messageFactory
11.) {
12. $this->httpClient = $httpClient;
13. $this->messageFactory = $messageFactory;
14. }
15.
16. // ...
17. }

phparch.com
http://www.php-fig.org/psr/psr-6/

18 \ December 2016 \ www.phparch.com

Abstracting HTTP Clients in PHP

Discovery
In addition to DI, the PHP-HTTP/discovery8 package

provides static discovery functions to find a currently avail-
able implementation of the client or, of factories. This is
mainly useful for a simple start with minimal configuration.
It is recommended to only use discovery as a fallback, and
always allow the user of the library to explicitly inject the
required client and factories. Listing 7 shows a constructor
with optional zero-config thanks to discovery.

Provide an HTTP Client Factory
If a library needs a specifically set up client, e.g. with

plugins, the best way is to provide a factory. Together with
discovery, you can keep the base client an optional argument
allowing your users to fine tune the client to their needs if
needed. Refer to Listing 8 for an example client factory which
sets the host and accepts additional plugins.

When using an HTTP client factory, make the $httpClient
constructor argument of the API client class required. This
allows your users to wire factory and API client together.

Outlook
This article discussed decoupling code from HTTP client

implementations. Ideally, these interfaces would not be
provided by a particular group, but exist as PSR standards.
There is hope; PSR-159, currently in draft status, attempts to
standardize middleware on the server side. Once a PSR for
promises is implemented, a PSR for client side middleware
can be implemented to replace the PHP-HTTP Plugin inter-
face. For message factories, there is PSR-17, also currently a
draft. Message implementations will likely provide factories
that implement the PSR-17 interfaces and the message facto-
ry part of PHP-HTTP can be retired.

8 PHP-HTTP/discovery:
http://docs.php-http.org/en/latest/discovery.html

9 PSR-15: http://www.php-fig.org/psr/

For the client interface, the PHP-HTTP group is preparing
to propose a PSR. This would enable clients to implement
the interface directly instead of the adapters PHP-HTTP now
provides.

Even without these PSRs, there are early adopters using
PHP-HTTP to decouple their libraries from the HTTP client:
Payum, Geocoder, Mailgun, the KNPLabs GitHub client, the
Happyr LinkedIn client and others.

If you take away one thing from this article, it should be
that API clients should not be coupled to a specific HTTP
client implementation. HTTPlug is the best we currently
have to decouple the client. Once the whole topic is covered
by PSRs, migrating to the PSR standards should be easier if
you start with HTTPlug instead of coupling to a specific
client implementation.

 David Buchmann works at Liip AG
as Symfony expert. He is maintaining
the Symfony Content Management
Framework, co-author of the FOSHttp-
CacheBundle and active with the
PHP-HTTP HTTPlug client abstrac-
tion. When he is not coding, he enjoys
travelling with his girlfriend, music and
boardgames. @dbu

LISTING 7
01. <?php
02. use Http\Client\HttpClient;
03. use Http\Discovery\HttpClientDiscovery;
04. use Http\Discovery\MessageFactoryDiscovery;
05. use Http\Message\MessageFactory;
06.
07. class ApiClient
08. {
09. public function __construct(
10. HttpClient $httpClient = null,
11. MessageFactory $messageFactory = null
12.) {
13. $this->httpClient = $httpClient ?:
14. HttpClientDiscovery::find();
15. $this->messageFactory = $messageFactory ?:
16. MessageFactoryDiscovery::find();
17. }
18. }

LISTING 8
01. <?php
02.
03. class HttpClientFactory
04. {
05. public static function createClient(
06. string $host,
07. array $plugins = [],
08. HttpClient $httpClient = null
09.) {
10. $host = UriFactoryDiscovery::find()->createUri($host);
11. if (!$host->getHost()) {
12. throw new \InvalidArgumentException(sprintf(
13. 'server uri must specify the host: "%s"',
14. $host
15.));
16. }
17.
18. $plugins[] = new AddHostPlugin($host);
19.
20. if (!$httpClient) {
21. $httpClient = HttpClientDiscovery::find();
22. }
23.
24. return new PluginClient($httpClient, $plugins);
25. }
26. }

phparch.com
http://docs.php-http.org/en/latest/discovery.html
http://www.php-fig.org/psr/
https://twitter.com/dbu

